Asynchronous Processing in Web Applications, Part 1: A Database Is Not a Queue

When hacking on web applications, you will inevitably find certain actions that are taking too long and as a result must be pulled out of the http request / response cycle. In other cases, applications will need an easy way to reliably communicate with other services in your system architecture.

The specific reasons will vary; perhaps the website has a real-time element, there’s a live chat feature, we need to resize and process images, we need to slice up and transcode video, do analysis of our logs, or perhaps just send emails at a high volume. In all the cases though, asynchronous processing becomes important to your operations.

Fortunately, there are a variety of libraries across all platforms intended to provide asynchronous processing. In this series, I want to explore this landscape, understand the solutions available, how they compare and more importantly how to pick the right one for your needs.

Asynchronous Processing

Let’s start by understanding asynchronous processing a bit better. Web applications undoubtedly have a great deal of code that executes as part of the HTTP request/response cycle. This is suitable for faster tasks that can be done within hundreds of milliseconds or less. However, any processing that would take more then a second or two will ultimately be far too slow for synchronous execution. In addition, there is often processing that needs to be scheduled in the future and/or processing that needs to affect an external service.

Synchronous HTTP Illustration

In these cases when we have a task that needs to execute but that is not a candidate for synchronous processing, the best course of action is to move the execution outside the request/response cycle. Specifically, we can have the synchronous web app simply notify another separate program that certain processing needs to be done at a later time.

Asynchronous Processing

Now, instead of the task running as a part of the actual web response, the processing runs separately so that the web application can respond quickly to the request. In order to achieve asynchronous processing, we need a way to allow multiple separate processes to pass information to one another. One naive approach might be to persist these notifications into a traditional database and then retrieve them for processing using another service.

Why not a database?

There are many good reasons why a traditional database is not well-suited for cases of asynchronous processing. Often you might be tempted to use a database because ther can be an understandable reluctance to introduce new technologies into a web stack. This leads people to try to use their RDBMS as a way to do background processing or service communication. While this can often appear to ‘get the job done’, there are a number of limitations and concerns that should not be overlooked.

Asynchronous Processing Model

There are two aspects to any asynchronous processing: the service(s) that creates processing tasks and the service(s) that consume and process these tasks accordingly. In the case of using a database as a method for this, typically there would be a database table which has records that represent notified tasks and then a flag to represent which state the task is in and whether the task is completed.

Polling Can Hurt

The first issue revolves around how to best consume and process these tasks stored within a table. With a traditional database this typically means a service that is constantly querying for new processing tasks or messages. The service may have a database poll interval of every second or every minute, but the service is constantly asking the database if there has been an update. Polling the database for processing has several downsides. You might have a short interval for polling and be hammering your database with constant queries. Alternatively, you could perhaps set a long interval in which case there will be many unnecessary processing delays. In the event of having multiple processing steps, the fastest route through your system has now been delayed to the sum of all the different polling intervals.

DB Polling

Polling requires very fast and frequent queries to the table to be most effective, which adds a significant load to the database even at a medium volume. Even worse, a given database table is typically prepared to be fast at adding data, updating data or querying data, but almost never all three on the same table. If you are constantly inserting, updating and querying, race conditions and deadlocks become inevitable. These ‘locks’ occur because multiple consumers will all be “fighting” with each other over the same table and with the ‘producers’ constantly adding new items. You will see load increase for the database, performance decrease and pile-ups become increasingly common as the volume scales up.

Manual Cleanup

In addition to that, clearing old jobs can be troublesome as well because at even a medium volume, there will be many tasks in the database table. At certain intervals, the old completed tasks need to be removed otherwise the table will grow quite large. Unfortunately, this has to be performed manually and deletes are even often not particularly efficient for tables especially when being removed so frequently in conjunction with updates and queries all happening at the same time.

Scaling Won’t Be Easy

In the end, while a database will appear to work at first as a simple way to send background instructions to be processed, this approach will come back to bite you. The many limitations such as constant polling, manual cleanups, deadlocks, race conditions and manual handling of failed processing should make it fairly clear that a database table is not a scalable strategy for this type of processing.


The takeaway here is that asynchronous processing is useful whether you need to send an sms, validate emails, approve posts, process orders, or just pass information between services. This type of background processing is simply not a task that a traditional RDBMS is best-suited to solve. While there are exceptions to this rule with PostgreSQL and its excellent notify support, there is a different class of software that was built from scratch for asynchronous processing use cases.

This type of software is called a message queue and you should strongly consider using this instead for a far more reliable, efficient and scalable way to perform asynchronous processing tasks. In the next part of this series, we will explore several different message queues in detail to understand how they work as well as how to contrast and compare the various options. Hope that this introduction was helpful and please let me know what you’d like to have covered in future parts of this series.

Continue to Part 2: Developers Need To Understand Message Queues